MEGA-CC (Compute Core) and MEGA-Proto Quick Start Tutorial

MEGA-CC Input Files

- MEGA Analysis Options file
 - Specifies the calculation and desired settings.
 - Created using MEGA-Proto.
 - Has a .*mao* file extension.
- Data file (one of the following)
 - Multiple sequence alignment in MEGA or Fasta format.
 - Distance matrix in MEGA format.
 - Unaligned sequences in Fasta format (for alignment only).
- Tree file (required for some analyses)
 - Newick file format.

MEGA-CC Output Files

- In general, two output files are produced
 - 1. Calculation-specific results file (Newick file, distance matrix,...).
 - 2. A summary file with additional info (likelihood, SBL,...).
 - Some analyses produce additional output (bootstrap consensus tree).
- Output directory/filename
 - Default is the same location as the input data file.
 - Specify an output directory and/or file name using -o option.
 - If no output filename is specified, MEGA-CC will assign a unique name.
- Errors/warnings
 - If MEGA-CC produces any errors or warnings, they will be logged in the the summary file.

Running MEGA-CC

- Easiest to run using command-line or batch scripts:
 - megacc –a settings.mao –d alignment.meg –o outFile
- Can also be run using custom scripts (Perl, Python, ...):
 - exec('megacc -a options.mao -d alignment.meg -o outFile');
- Integrated *File Iterator* system can process multiple files without the need for using scripts (see Demo2 below)
- In addition, other applications can launch MEGA-CC:
 - status = CreateProcess("path/to/megacc.exe...");
- To see a list of available command options, call megacc from a command-line prompt with the -h flag.

MEGA-Proto (analysis prototyper)

- Has the same look and feel as the GUI edition of MEGA.
- Produces MEGA Analysis Options files.
- Has no computational capabilities.

🔉 MEGA 6 Analysis Settings Prototyper 🛛 📮 🗖	
Image: Selection Image: Selection Image: Selection Image: Selection Align Models Distance Diversity Phylogeny User Tree Ancestors Selection Rates Clocks	
Specify a data type for analysis Image: Nucleotide (non-coding) Nucleotide (coding)	
Protein (amino acid)	
Distance (MEGA format)	
🚯 😓 🖃 📾 🖕	
First Time User? Tutorial Citation Report a Bug MEGA Links	
Nucleotide (non-coding) data specified	14

Using MEGA-Proto

- 1. Select input data type.
 - Nucleotide (non-coding)
 - Nucleotide (coding)
 - Protein (amino-acid)
 - Distance matrix (MEGA format)
- 2. Select analysis from menu.
- 3. Adjust analysis settings.
- 4. Save the MEGA Analysis Options file.

Demo1

 The following example demonstrates how to create a timetree using MEGA-Proto and MEGA-CC

Demo1 Data Files

• For this demo, we will be using some of the example data files that were copied to your documents directory by the installer (*i.e.* Documents\MEGACC\examples).

00-	> 길 → Libraries → Documents → M	EGACC ▶ examples ▶	✓ 4y Search examples	
Eile Edit	View Tools Halp			
File Eult				
Organize	✓ Share with ✓ Burn N	ew folder		
	Documents library examples		Arrange by: Folde	er 🔻
	NeiKumar2000	🖉] cMOD.meg	hsp20.fas	
	Magazineg	mtCDNA.meg	mtCDNA.nwk	
	mtCDNACalibration.txt	ABI01.abi	Chloroplast_Martin.meg	
	Chloroplast_Martin.nwk	Contigs.meg	Crab_NJ.nwk	
	Crab_rRNA.meg	Crab_rRNA_Dist.meg	🕙 Distances_Crab.meg	
	🔄 D-loop_Vigilant.meg	🕙 D-loop_Vigilant.nwk	🖳 Drosophila.nwk	
	Drosophila_Adh.meg	HLA-3Seq.meg	Hum_Dist.meg	
	21 items			

 Open MEGA-Proto by selecting MEGA-Proto from the Start Menu

 Select the data type of the input data file to be analyzed. For this demo, we will accept the default setting - Nucleotide (non-coding).

🙀 MEGA 6 Analysis Settings Prototyper 🛛 📮 🗆 🗙					
Image: Specify a data type for analysis Image: Nucleotide (non-coding) Image: Nucleotide (coding) Image: Nucleotide (coding)	5				
Distance (MEGA format)					
Nucleotide (non-coding) data specified					

• Select *Compute Timetree (Reltime ML)* from the *Clocks* menu.

MEGA 6 Analysis Settings Prototyper	_ 🗆 ×
E №! Ω Ω Γ∈! Γ∈!	Clocks
Specify a data type for analysis	🖽 Tajima's Relative Rate Test
Nucleotide (non-coding)	² / _{InL} Test Molecular Clock (ML)
	Compute Timetree (Reltime ML)
Nucleotide (coding)	
Protein (amino acid)	
Distance (MEGA format)	
🚯 🔛 🖃 🌒 🖕	
First Time User? Tutorial Citation Report a Bug MEGA Links	
Nucleotide (non-coding) data specified	li
5	

- Adjust the analysis preferences to match those shown.
- Click the Save Settings... button and save the analysis options file as demoSettings.mao in the MEGACC\examples directory.

har M6: Analysis Preferences _ □ ×					
Options Summary Gaps/Identical/Mi	ssing Data Treatment				
Option	Selection				
Analysis	Estimate Divergence Times (ML)				
Tree to Use	Use tree from file				
Clock Settings					
Clock Type	Local clocks				
Clock Stringency	All clocks (do not merge clock rates)				
Variance Estimation Method	Analytical method				
No. of Bootstrap Replications	Not Applicable				
Statistical Method	Maximum Likelihood				
Substitution Model					
Substitutions Type	Nucleotide				
Model/Method	Tamura-Nei model				
Rates and Patterns					
Rates among Sites	Uniform rates				
No of Discrete Gamma Categories	Not Applicable				
Data Subset to Use					
Gaps/Missing Data Treatment	Complete deletion				
Site Coverage Cutoff (%)	Not Applicable				
Branch Swap Filter	None				
System Resource Usage					
Number of Threads	1				
	Save Settings X Cancel				

 The timetree analysis requires that we specify an outgroup. To do so, create a text file and add the line 'gibbon=outgroup'. Save this file as groups.txt in the **MEGACC**\examples directory.

- Open a command prompt.
- Navigate to the MEGACC\examples directory using the cd command

Administrator: C:\Windows\system32\cm	d.exe		
c:\llsevs\kumav]ab\Documents\cd	MEGACON	examples	<u>^</u>
	00.00		
C:\Users\kumarlab\Documents\ME Volume in drive C has no labe	GHCCNexa 1.	mples/dir	
Volume Serial Number is 5A84-	D35C		
Directory of c:\Users\kumarla	b\Docume:	nts\MEGACC\examples	
0971572014 09+47 6M (DIR)			
09/15/2014 09-47 MM (DID)			
06/15/2014 07-57 6M	144 635	ORIGI abi	=
06/17/2014 07:57 M	155 129	Chlowonlast Mantin mer	
06/17/2014 07:57 AM	291	Chloroplast Martin nuk	
06/17/2014 07:57 AM	6 932	cMOD meg	
06/17/2014 07:57 AM	171.087	Contigs meg	
06/17/2014 07:57 AM	566	Crah NJ.nwk	
06/17/2014 07:57 AM	6.932	Crab rBNA.meg	
06/17/2014 07:57 AM	2.563	Crab rRNA Dist.meg	
06/17/2014 07:57 AM	51,216	D-loop_Vigilant.meg	
06/17/2014 07:57 AM	2,708	D-loop_Vigilant.nwk	
06/17/2014 07:57 AM	4,092	Distances_Crab.meg	
06/17/2014 07:57 AM	385	Drosophila.nwk	
06/17/2014 07:57 AM	15,796	Drosophila_Adh.meg	
06/17/2014 07:57 AM	4,777	HLA-3Seq.meg	
06/17/2014 07:57 AM	5,081	hsp20.fas	
06/17/2014 07:57 AM	6,305	hsp20.meg	
06/17/2014 07:57 AM	1,348	Hum_Dist.meg	
06/17/2014 07:57 AM	24,249	mtCDNA.meg	
06/17/2014 07:57 AM	110	mtCDNA.nwk	
06/17/2014 07:57 AM	131	mtCDNACalibration.txt	
09/15/2014 09:47 AM <dir></dir>		NeiKumar2000	
20 File(s)	604,33	2 bytes	
3 Dir(s) 540,2	53,282,3	04 bytes free	
e tylle en ey kumpn la by De europeter MT	0000	mulae	-
C - NOSCEPS NRUMAP LAD VDOCUMENCS NHE	GHGGNEXa	ubres/	
] • [te. ▲

- Execute the analysis by calling megacc from the command prompt as follows:
- megacc -a demoSettings.mao -d mtCDNA.meg -t mtCDNA.nwk -g groups.txt -c mtCDNACalibration.txt

 The analysis will be launched and progress updates will be displayed in the command prompt window.

Administrator: C:\Windows\system32\cmd.exe - me	gacc -a demoSettings.mao -d mtCDNA.meg -t mtCDN 👝 💷 🗾	K
Branch Swap Filter Number of Threads datatype containsCodingNuc MissingBaseSymbol IdenticalBaseSymbol GapSymbol Start time: 9/15/2014 10:21:08 Executing analysis: 100% Analysis Complete	None 1 snNucleotide False ? -	*
c:\Users\kumarlab\Documents\MEGACC\ex. MEGA-CC.10 Molecular Evolutionary Ger Build#: 6140910 0% Organizing sequence information 0% 9/15/2014 10:21:16 Using the following analysis options: No. of Taxa No. of Groups	amples>megacc -a demoSettings.mao -d mtCDNA.meg netics Analysis on 7 1	
Analysis Tree to Use Clock Type Clock Stringency Variance Estimation Method No. of Bootstrap Replications Statistical Method Substitutions Type Model/Method Rates among Sites No of Discrete Gamma Categories Gaps/Missing Data Treatment Site Coverage Cutoff (%) Branch Swap Filter Number of Threads datatype containsCodingNuc MissingBaseSymbol IdenticalBaseSymbol GapSymbol Start time: 9/15/2014 10:21:16 Executing analysis:	Estimate Divergence Times (ML) Use tree from file Local clocks All clocks (do not merge clock rates) Analytical method Not Applicable Maximum Likelihood Nucleotide Tamura-Nei model Uniform rates Not Applicable Complete deletion Not Applicable None 1 snNucleotide False ?	Е
75% Optimizing user tree	>	

Finally

- The analysis will produce several output files in the directory MEGACC\examples\M6CC_Out
 - mtCDNA-xxxx_exactTimes.nwk
 - This Newick file gives the timetree scaled according to the estimated divergence times.
 - mtCDNA-xxxx_relTimes.nwk
 - This Newick file gives the timetree scaled according to the estimated relative divergence times.
 - mtCDNA-xxxx.txt
 - This text file gives a more detailed representation of the timetree, including relative times, exact times, evolutionary rates, and divergence time std errors.
 - mtCDNA-xxxx_summary.txt
 - This file gives analysis information such as the log likelihood value of the Maximum Likelihood tree, ts/tv ratio, etc...

Demo2

 The following example demonstrates how to use the File Iterator system in MEGA-CC to process multiple input data files using a single analysis options file.

MEGA 6 Analys	is Settings Proto	typer						- = ×
≣ Align Mo	📽 🔹 🕨 odels 🔹 Distanc	e Diversity	• CE • Phylogeny	User Tree	• Ancestors •	Selection	Rates	Clocks
Specify a dat Nucleotide Nucleotide Protein (ar Distance (1)	(non-coding) (coding) (coding) mino acid) VIEGA format)							
First Time User? Nucleotide (non-coding)	Tutorial g) data specified	Citation	= 1 Report a Bug	🎯 MEGA Links	•			li
Ra No Ga Si HL In Br Nu da mi id op Pr Ma Co Ma Op	ites among Site of Discrete G psy/Missing Dat te Coverage Cu Heuristic Meth hitial Tree for anch Swap Filt mber of Thread tatype .ssingBaseSymbol enticalBaseSymbol enticalBaseSymbol reparing data king initial t mputing initial totimizing initial totimizing initial totimizing initial totimizing initial totimizing initial totimizing filt 10% 25% 58% 67% 71% 78% 80% arching ML tre 0% 4% 8% 13% 13%	s amma Categori a Treatment toff (%) hod ML er s 1 bol 1 bol 1 parameter (ree al tree	: Unif : Subt : Comp : Not (: Subt : Make : Uery : 1 : snNu : ? : . : - values	orm rates Applicable lete deletion Applicable ree-Pruning- initial tre- Strong cleotide	n Regrafting - e automatica	Fast (SPR	level 3) um Parcimo	ny)

- Create a text file named demo2Data.txt which we will use to specify multiple alignment files for ML phylogeny inference.
- In this file, add the full paths to the Crab_rRNA.meg and Drosophila_Adh.meg example files.

- From a command-line prompt, call MEGA-CC as follows:
 - megacc –a mlDemo.mao –d demo2Data.txt

Manual Administrator	r: C:\Windows\sy	stem32\cmd.exe				- • ×
c:\Users\ku	marlab\Docu	ments>cd MEG	ACC			
c:\Users\kun Volume in (Volume Ser:	c:\Users\kumarlab\Documents\MEGACC>dir Volume in drive C has no label. Volume Serial Number is 8AC1-E3EE					
Directory	of c:\Users	\kumarlab\Do	cuments\MEGACC			
09/12/2014	09:23 AM	<dir></dir>				
09/12/2014	09:23 AM	<dir></dir>				
09/12/2014	09:23 AM	<dir></dir>	docs			
09/12/2014	09:23 AM	<dir></dir>	examples			
	0 File(s)	0 bytes			
	4 Dir(s) 1,590,847	,639,552 bytes fr	ee		
c:\Users∖ku	marlab\Docu	ments\MEGACC	>megacc -a mlDemo	.mao -d demo2D	ata.txt_	-
•			III			H. ▲

 The analyses will be launched sequentially and progress updates will be displayed in the command prompt window.

Administrator: C:\Windows\system32\cmd.exe	
c:\yourWorkingDirectory> M51CC.exe - MEGA 5.1 Molecular Evolutionary Gene Build#: 5120301 Data file : Examples Reading header Reading data	a mlDemo.mao -d Examples\Crab_rRNA.meg -o demoResults tics Analysis \Crab_rRNA.meg
Data read	
Storing information	≡
Setting up Sequence/group names	
Setting up genes/domains information	
Organizing sequence information	
Analysis Options:	
No. of Taxa :	13
Analysis :	Phylogeny Reconstruction
Statistical Method :	Maximum Likelihood
Test of Phylogeny :	Bootstrap method
No. of Bootstrap Replications :	500 Nuclearly de
Substitutions Type :	Nucleotide Comercal Time Deversible model
Rotes among Sites	General lime Reversible model
No of Discrete Gamma Categories	Not Opplicable
Gans/Missing Data Treatment	Complete deletion
Site Coverage Cutoff (%)	Not Applicable
ML Heuristic Method	Subtree-Pruning-Regrafting - Fast (SPR level 3)
Initial Tree for ML	Make initial tree automatically (Maximum Parsimony)
Branch Swap Filter :	Very Strong
Number of Threads :	1
datatype :	snNucleotide
missingBaseSymbol :	?
identicalBaseSymbol :	
gapSymbol :	-
Preparing data	
Making initial tree	
Computing initial parameter values	
Making initial tree	
10%	
25%	
50%	
58%	
67%	
71%	
75%	~
•	

Finally

- The analysis will produce output files for each input data file
- In this example, the same analysis options were used for each alignment file
- Enjoy!